

Detecting Subtle Shape Differences in Hemodynamic Responses

Gang Chen¹, Ziad Saad¹, Nancy Adleman², Ellen Leibenluft³, Robert Cox¹

¹Scientific and Statistical Computing Core 3Section on Bipolar Spectrum Disorders, Emotion and Development Branch NIMH / NIH / DHHS, Bethesda, MD, USA

Department of Psychology, The Catholic University of America, Washington, DC, USA Contact: gangchen@mail.nih.gov http://afni.nimh.nih.gov

Introduction: Hemodynamic Response (HDR)

♦ Nature of HDR remains elusive

- o Changes in cerebral flow and fluctuations of oxyhemoglobin and deoxyhemoglobin are captured by BOLD during FMRI scanning
- o BOLD signal: an indicator but indirect measure of neuronal activities
- o Complex relationship between BOLD and neural activation
 - Same neuronal activity may evoke different HDR shapes across trials, regions, conditions, subjects, or groups

Estimation of HDRs: 3 approaches

- o Fixed-shape method (FSM): presuming a fixed-shape HDR
 - One basis: gamma variate, canonical curve
- o Estimated-shape method (ESM)
- A few bases: tents, cubic splines, FIR, inverse logit, ...
- Adjusted-shape method (ASM)
 - 2 or 3 bases: canonical curve, time derivative, dispersion derivative

♦ Research aims

- Which HDR estimation method among the three is preferable?
- How to perform group analysis with multiple effect estimates per condition from ESM?

Schematic Comparisons of Testing Methods for ESM

♦ Candidate testing methods

- → Multivariate (MVT)
- Approximation through the interaction effect by univariate testing (XUV)
- Area under the curve (AUC)
- Euclidean distance (L2D)
- Approximate testing through the interaction effect by multivariate testing (XMV)

		Two-sample or p	aired			
Method	thod MVT		L2D	EXC (XUV and XMV)		
H_0	$\alpha_{11} = \alpha_{21},, \alpha_{1m} = \alpha_{2m}$	$\sum_{j=1}^{m} \alpha_{1j} = \sum_{j=1}^{m} \alpha_{2j}$	$(\sum_{j=1}^{m} \alpha_{1j}^2)^{1/2} = (\sum_{j=1}^{m} \alpha_{2j}^2)^{1/2}$	$\alpha_{11}-\alpha_{21}=\ldots=\alpha_{1m}-\alpha_{2m}$		
Dimensions in \mathbb{R}^m	0	m-1	m-1	1		
DFs for F -statistic	m, n - m - q + 1	1, n - q	1, n - q	m-1, (m-1)(n-q)		
Geometric representation of H_0 and H_1						
Geometric representation of HDR when detection failure occurs due to improper H_0 formulation	по					

Comparisons of Testing Methods with Simulations

Comparisons of Testing Methods via Real Data

Voxel		ESM: p-value				ASM: p-value					
No.	coordinates	MVT	XUV	AUC	L2D	XMV	MVT	XUV	AUC	L2D	β_0
1	41 -22 54	0.020	0.0002	0.67	0.18	0.013	0.015	0.0025	0.34	0.14	0.42
2	6 -64 46	0.0017	0.119	0.009	0.482	0.0012	0.037	0.22	0.0040	0.092	0.010

- o FSM or ASM may fail to detect shape subtleties
- ESM more accurately characterizes BOLD responses
- o Better to take individual effect estimates of ESM for group analysis
- Use LME for one group with no other explanatory variables
- Combine XUV, XMV, MVT, and AUC

Acknowledgements

The research was supported by the NIMH & NINDS Intramural Research Programs of the NIH.